Stat 534: formulae referenced in lecture, week 1: species composition analysis

Poisson probability mass function (pmf), Y ~ Pois()), for 2 a non-negative integer:
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Properties of Poisson distributions:

Mean EY =)\
Variance VarY = )\
P[Y=0]= e A

One species Vanellus vanellus, northern lapwing
1930’s: 10, 11, 12, 10, 8, 6, 5, 3, 5, 4
1960’s: 25, 17, 20, 4, 7, 18, 27, 18, 18, 10

Log likelihood for n independent Poisson observations:
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Estimating A: find the value of A that maximizes the InL
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ax A _ called the maximum likelihood estimator (mle) of 0
mle A=Y",Y;/n=Y

How precise is A? Two parts:
e For the statisticians, mostly a reminder

— As sample size, n — oo, Var 6 — —1/1
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— [ is called information, Fisher information or expected information

— Cramer-Rao lower bound: The mle of 6 has the smallest variance of any possible
estimator

* When the model is correct



— Property of the population

— All the math depends on some assumptions about f(6), “the regularity condi-
tions”

For the applied statistician / biologist

— Observed information 2 inl
H = Tenz evaluated at @

— Property of the sample and the probability model
— Easily (usually) calculated by software

For any mle, §: Var 6 ~ —1/H.

e When more than one parameter, H is the Hessian matrix (will see examples later)

e For a Poisson distribution:
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~ Var A= —1/H = 2

Confidence interval for \:

e Asymptotic normality

(é — 2zp\/ Var 0, 6+ zp\/ Var é)

— p =1 - (1-coverage) /2, e.g. p=10.975 for a 95% confidence interval

— Zo.975 = 1.96

— normal quantiles are symmetric so z1_, = —2,.

o Profile likelihood: will see soon

Q: Did the abundance change more than you would expect from random variation?
A hypothesis test: H,: same A both periods, H,: two \’s, one for each period

Use a likelihood ratio test. Two ways to set this up:

1. based on the hypothesis statements:
H,: one group of observations, all with one A
LnL, = =20 A +log A X2, ¥; — 232, Vi
H,: two groups of observations, 1930’s with A;, 1960’s with A,
LnL, = f—lo A +log\ S0 Y — 300 Yi!} + [—10 Ao +log a0 Y — 320 Yi!}



2. based on a model:

Y, ~ Pois(\)
log\i = [o+ /X,

X; = 0 if observation i is in 1930’s group, and X; = 1 if in 1960’s group.

Notice the relationship between the two approaches
o expfo =X\
o 31 =log Ay —log Ay, so exp 51 = Ao/ Ay
e 51 =04 Ay = \;. Expresses H,

e We choose to put a model on log A\ because A > 0

Construct a test using D = —2 (LnL, — LnL,)
e D = 0: both models fit the data equally well
e D >>0: H, fits a lot better than H,
e When H, true, asymptotically D ~ ng

— df = difference in number of parameters between the models
— Applies to any likelihood comparison
— when based on the same data (e.g., same # observations)

— Assumes large samples (asymptotic) but commonly applied to any sample size
e Here, H, has 2 parameters, H, has 1 parameter, so df = 2-1 =1

— 0.95 quantile of a x? distribution = 3.84 = 1.96°.
— 0.975 quantile of a normal distribution = 1.96

— Two useful numbers to remember.

Notice that:
° 2?21 Y;! can be ignored - cancels out when LnL subtracted
e The only way the data enters into the likelihood is through >, Y;.

— Sufficient statistic: how the data enters the InL. Y, Y;
— >, Y, is the sufficient statistic for the Poisson distribution

— Variability between observations is ignored
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— But depends on distribution:
e Normal distributions have 2 parameters, mean and variance

— LnL has two sufficient statistics: 3, Y; and 3, Y72

Binomial distribution:

e 2 parameters, N = # trials, and m = probability of a “success” on any single trial.

e P[ # successes = y] = (];])Wm(l — )=o) = (N_L;)m”x(l — )=o)
e EY =Nn

o T=1%

o Var 7 = 207

Comparison of Binomial and Poisson distributions
e Imagine N increasing but mean # successes staying constant:

Y ~ Bin(N,r), N — oo, m =0, N7m = constant

e Distribution of Y — Poisson

Negative binomial distribution:
e Y =+ successes before getting r failures

— Two parameters: r = # failures and m = P[success on a single trial]

— Two parameters: 1 = mean # events, r = overdispersion parameter, could be
continuous

EY =u

Var Y = p+ p?/r, or p+ ap?

P(Y =y) = F;!rpjzg) <7" i u>r (r i u)y

e I'(n) = (n — 1)! when n integer

e pmf:

Var Y > E Y, equal only when r = oo or « =0

e r=oc0ora=0=Y ~ Pois(u)



Estimating p and r:

e Observe n values: y1, Y2, Yz, Yn

o LnL(u, r|{y} =
S log D(r +y;) — Xlog D(y: + 1) — nlog T(r) + nrlog (75) + i (7£5)

e Derivatives are ugly:

— derivative of log I'(z) is the digamma function, ~ logx
— results are transcendental equations, have terms with r and terms with logr
— Generally no analytical solution, so no equations giving mle’s for p or r

e Need to use numeric maximization
common theme in this course, so don’t worry about your calculus



