Stat 534: formulae referenced in lecture, week 1: species composition analysis

Poisson probability mass function (pmf), $Y \sim \text{Pois}(\lambda)$, for x a non-negative integer:

$$
f(y | \lambda) = P(Y = y | \lambda) = \frac{e^{-\lambda}\lambda^y}{y!}
$$

Properties of Poisson distributions:

Mean $E Y = \lambda$ Variance Var $Y = \lambda$ $P[Y = 0] = e^{-\lambda}$

One species Vanellus vanellus, northern lapwing 1930's: 10, 11, 12, 10, 8, 6, 5, 3, 5, 4 1960's: 25, 17, 20, 4, 7, 18, 27, 18, 18, 10

Log likelihood for n independent Poisson observations:

$$
L(\lambda \mid y) = \frac{e^{-\lambda} \lambda^y}{y!}
$$

$$
\ln L(\lambda \mid (y_1, y_2, \cdots y_n) = -n\lambda + \log \lambda \sum_{i=1}^n y_i - \sum_{i=1}^n y_i!
$$

Estimating λ : find the value of λ that maximizes the lnL

 $\frac{d \ln L}{d \lambda} = -n + \frac{\sum_{i=1}^{n} Y_i}{\lambda} = 0$ mle $\hat{\lambda} = \sum_{i=1}^n Y_i/n = \overline{Y}$ called the maximum likelihood estimator (mle) of θ

How precise is $\hat{\lambda}$? Two parts:

• For the statisticians, mostly a reminder

– As sample size, $n \to \infty$, Var $\hat{\theta} \to -1/I$

$$
I = \mathbf{E} \left(\frac{d \ln L(\theta)}{d \theta} \right) \left(\frac{d \ln L(\theta)}{d \theta} \right)
$$
 evaluated at θ
= $\mathbf{E} \frac{d^2 \ln L}{d \theta^2} |_{\lambda = \theta}$

- I is called information, Fisher information or expected information
- Cramer-Rao lower bound: The mle of θ has the smallest variance of any possible estimator
	- ∗ When the model is correct
- Property of the population
- All the math depends on some assumptions about $f(\theta)$, "the regularity conditions"
- For the applied statistician / biologist
	- Observed information

$$
H=\frac{d^2\ln L}{d\,\theta^2}
$$
 evaluated at $\hat{\theta}$

- Property of the sample and the probability model
- Easily (usually) calculated by software
- For any mle, $\hat{\theta}$: Var $\hat{\theta} \approx -1/H$.
- When more than one parameter, H is the Hessian matrix (will see examples later)
- For a Poisson distribution:

$$
- H = \frac{d^2 \ln L}{d \lambda^2} \Big|_{\lambda = \hat{\lambda}} = \frac{-1 \sum_i Y_i}{\lambda^2} \Big|_{\lambda = \hat{\lambda}} = \frac{-1 \sum_i Y_i}{\hat{\lambda}^2}
$$

$$
- \text{Var } \hat{\lambda} = -1/H = \frac{\hat{\lambda}}{n}
$$

Confidence interval for λ :

• Asymptotic normality

$$
- \left(\hat{\theta} - z_p \sqrt{\text{Var } \hat{\theta}}, \hat{\theta} + z_p \sqrt{\text{Var } \hat{\theta}}\right)
$$

- $p = 1$ - (1-coverage)/2, e.g. $p = 0.975$ for a 95% confidence interval
- $z_{0.975} = 1.96$

-
- normal quantiles are symmetric so $z_{1-p} = -z_p$.
- Profile likelihood: will see soon

Q: Did the abundance change more than you would expect from random variation? A hypothesis test: H_o: same λ both periods, H_a: two λ 's, one for each period

Use a likelihood ratio test. Two ways to set this up:

1. based on the hypothesis statements: H_o : one group of observations, all with one λ LnL_o = $-20 \lambda + \log \lambda \sum_{i=1}^{20} Y_i - \sum_{i=1}^{20} Y_i!$ H_a : two groups of observations, 1930's with λ_1 , 1960's with λ_2 $\text{LnL}_{a} = \left[-10 \lambda_1 + \log \lambda_1 \sum_{i=1}^{10} Y_i - \sum_{i=1}^{10} Y_i! \right] + \left[-10 \lambda_2 + \log \lambda_2 \sum_{i=11}^{20} Y_i - \sum_{i=11}^{20} Y_i! \right]$ 2. based on a model:

$$
Y_i \sim \text{Pois}(\lambda_i)
$$

$$
\log \lambda_i = \beta_0 + \beta_1 X_i
$$

 $X_i = 0$ if observation i is in 1930's group, and $X_i = 1$ if in 1960's group.

Notice the relationship between the two approaches

- $\exp \beta_0 = \lambda_1$
- $\beta_1 = \log \lambda_2 \log \lambda_1$, so $\exp \beta_1 = \lambda_2/\lambda_1$
- $\beta_1 = 0 \Leftrightarrow \lambda_2 = \lambda_1$. Expresses H_o
- We choose to put a model on log λ because $\lambda \geq 0$

Construct a test using $D = -2 (LnL_o - LnL_a)$

- $D = 0$: both models fit the data equally well
- $D >> 0$: H_a fits a lot better than H_o
- When H_o true, asymptotically $D \sim \chi^2_{df}$
	- $-df$ = difference in number of parameters between the models
	- Applies to any likelihood comparison
	- when based on the same data (e.g., same $\#$ observations)
	- Assumes large samples (asymptotic) but commonly applied to any sample size
- $\bullet\,$ Here, $\rm H_{\it a}$ has 2 parameters, $\rm H_{\it o}$ has 1 parameter, so $\rm df$ = 2-1 = 1
	- $-$ 0.95 quantile of a χ_1^2 distribution = 3.84 = 1.96².
	- -0.975 quantile of a normal distribution $= 1.96$
	- Two useful numbers to remember.

Notice that:

- $\sum_{i=1}^{20} Y_i!$ can be ignored cancels out when LnL subtracted
- The only way the data enters into the likelihood is through $\sum_i Y_i$.
	- Sufficient statistic: how the data enters the lnL. $\sum_i Y_i$
	- $-\sum_i Y_i$ is the sufficient statistic for the Poisson distribution
	- Variability between observations is ignored
- But depends on distribution:
- Normal distributions have 2 parameters, mean and variance
	- LnL has two sufficient statistics: $\sum_i Y_i$ and $\sum_i Y_i^2$

Binomial distribution:

- 2 parameters, $N = #$ trials, and $\pi =$ probability of a "success" on any single trial.
- P[$\#$ successes $=y$] = $\binom{N}{x}$ x $\int \pi^x (1-\pi)^{(N-x)} = \frac{N!}{(N-x)}$ $\frac{N!}{(N-x)!x!}\pi^x(1-\pi)^{(N-x)}$
- E Y = $N\pi$
- $\hat{\pi} = \frac{Y}{\Lambda}$ N
- Var $\hat{\pi} = \frac{\hat{\pi}(1-\hat{\pi})}{N}$ N

Comparison of Binomial and Poisson distributions

• Imagine N increasing but mean $#$ successes staying constant:

 $Y \sim Bin(N, \pi)$, $N \to \infty$, $\pi \to 0$, $N\pi = constant$

• Distribution of $Y \to \text{Poisson}$

Negative binomial distribution:

- $Y = \#$ successes before getting r failures
	- Two parameters: $r = #$ failures and $\pi = P$ [success on a single trial]
	- Two parameters: μ = mean # events, r = overdispersion parameter, could be continuous
- E $Y = \mu$
- Var $Y = \mu + \mu^2/r$, or $\mu + \alpha \mu^2$
- pmf:

$$
P(Y = y) = \frac{\Gamma(r + y)}{y! \Gamma(r)} \left(\frac{r}{r + \mu}\right)^r \left(\frac{\mu}{r + \mu}\right)^y
$$

- $\Gamma(n) = (n-1)!$ when n integer
- Var $Y \geq E Y$, equal only when $r = \infty$ or $\alpha = 0$
- $r = \infty$ or $\alpha = 0 \Rightarrow Y \sim \text{Pois}(\mu)$

Estimating μ and r :

- Observe *n* values: $y_1, y_2, y_3 \cdots, y_n$
- LnL $(\mu, r | \{y\})$ = \sum log $\Gamma(r + y_i) - \sum$ log $\Gamma(y_i + 1) - n$ log $\Gamma(r) + n r$ log $\left(\frac{r}{r+1}\right)$ $r+\mu$ $+\sum y_i\left(\frac{\mu}{r+1}\right)$ $r+\mu$ \setminus
- Derivatives are ugly:
	- derivative of $\log \Gamma(x)$ is the digamma function, $\approx \log x$
	- results are transcendental equations, have terms with r and terms with $\log r$
	- Generally no analytical solution, so no equations giving mle's for μ or r
- Need to use numeric maximization common theme in this course, so don't worry about your calculus