Stat 534: formulae referenced in lecture, week 1: species composition analysis

Poisson probability mass function (pmf), $Y \sim \text{Pois}(\lambda)$, for x a non-negative integer:

$$f(y \mid \lambda) = P(Y = y \mid \lambda) = \frac{e^{-\lambda} \lambda^y}{y!}$$

Properties of Poisson distributions:

Mean E $Y = \lambda$ Variance Var $Y = \lambda$ P[Y = 0] = $e^{-\lambda}$

One species *Vanellus vanellus*, northern lapwing 1930's: 10, 11, 12, 10, 8, 6, 5, 3, 5, 4 1960's: 25, 17, 20, 4, 7, 18, 27, 18, 18, 10

Log likelihood for n independent Poisson observations:

$$L(\lambda \mid y) = \frac{e^{-\lambda}\lambda^{y}}{y!}$$
$$\ln L(\lambda \mid (y_{1}, y_{2}, \cdots y_{n}) = -n \lambda + \log \lambda \sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} y_{i}!$$

Estimating λ : find the value of λ that maximizes the lnL

 $\begin{array}{ll} \frac{d \ln L}{d \lambda} &= -n + \frac{\sum_{i=1}^{n} Y_i}{\lambda} = 0 \\ \mathrm{mle} & \hat{\lambda} = \sum_{i=1}^{n} Y_i / n = \overline{Y} \end{array} \text{ called the maximum likelihood estimator (mle) of } \theta$

How precise is $\hat{\lambda}$? Two parts:

• For the statisticians, mostly a reminder

– As sample size, $n \to \infty$, Var $\hat{\theta} \to -1/I$

$$I = E \left(\frac{d \ln L(\theta)}{d \theta} \right) \left(\frac{d \ln L(\theta)}{d \theta} \right) \text{ evaluated at } \theta$$
$$= E \frac{d^2 \ln L}{d \theta^2} |_{\lambda=\theta}$$

- -I is called information, Fisher information or expected information
- Cramer-Rao lower bound: The mle of θ has the smallest variance of any possible estimator
 - * When the model is correct

- Property of the population
- All the math depends on some assumptions about $f(\theta)$, "the regularity conditions"
- For the applied statistician / biologist
 - Observed information

$$H = \frac{d^2 \ln L}{d \theta^2} \text{ evaluated at } \hat{\theta}$$

- Property of the sample and the probability model
- Easily (usually) calculated by software
- For any mle, $\hat{\theta}$: Var $\hat{\theta} \approx -1/H$.
- When more than one parameter, H is the Hessian matrix (will see examples later)
- For a Poisson distribution:

$$-H = \frac{d^2 \ln L}{d \lambda^2} \Big|_{\lambda=\hat{\lambda}} = \frac{-1 \sum_i Y_i}{\lambda^2} \Big|_{\lambda=\hat{\lambda}} = \frac{-1 \sum_i Y_i}{\hat{\lambda}^2}$$
$$- \operatorname{Var} \hat{\lambda} = -1/H = \frac{\hat{\lambda}}{n}$$

Confidence interval for λ :

• Asymptotic normality

$$-\left(\hat{\theta} - z_p \sqrt{\operatorname{Var} \hat{\theta}}, \quad \hat{\theta} + z_p \sqrt{\operatorname{Var} \hat{\theta}}\right)$$
$$-p = 1 - (1 - \operatorname{coverage})/2, \text{ e.g. } p = 0.975 \text{ for a } 95\% \text{ confidence interval}$$

- $z_{0.975} = 1.96$
- normal quantiles are symmetric so $z_{1-p} = -z_p$.
- Profile likelihood: will see soon

Q: Did the abundance change more than you would expect from random variation? A hypothesis test: H_o : same λ both periods, H_a : two λ 's, one for each period

Use a likelihood ratio test. Two ways to set this up:

1. based on the hypothesis statements: H_o: one group of observations, all with one λ $\operatorname{LnL}_{o} = -20 \ \lambda + \log \lambda \sum_{i=1}^{20} Y_{i} - \sum_{i=1}^{20} Y_{i}!$ H_a: two groups of observations, 1930's with λ_{1} , 1960's with λ_{2} $\operatorname{LnL}_{a} = \left[-10 \ \lambda_{1} + \log \lambda_{1} \sum_{i=1}^{10} Y_{i} - \sum_{i=1}^{10} Y_{i}! \right] + \left[-10 \ \lambda_{2} + \log \lambda_{2} \sum_{i=11}^{20} Y_{i} - \sum_{i=11}^{20} Y_{i}! \right]$ 2. based on a model:

$$Y_i \sim \operatorname{Pois}(\lambda_i)$$
$$\log \lambda_i = \beta_0 + \beta_1 X_i$$

 $X_i = 0$ if observation *i* is in 1930's group, and $X_i = 1$ if in 1960's group.

Notice the relationship between the two approaches

- $\exp \beta_0 = \lambda_1$
- $\beta_1 = \log \lambda_2 \log \lambda_1$, so $\exp \beta_1 = \lambda_2 / \lambda_1$
- $\beta_1 = 0 \Leftrightarrow \lambda_2 = \lambda_1$. Expresses H_o
- We choose to put a model on log λ because $\lambda \geq 0$

Construct a test using $D = -2 (LnL_o - LnL_a)$

- D = 0: both models fit the data equally well
- D >> 0: H_a fits a lot better than H_o
- When H_o true, asymptotically $D \sim \chi^2_{df}$
 - df = difference in number of parameters between the models
 - Applies to any likelihood comparison
 - when based on the same data (e.g., same # observations)
 - Assumes large samples (asymptotic) but commonly applied to any sample size
- Here, H_a has 2 parameters, H_o has 1 parameter, so df = 2-1 = 1
 - -0.95 quantile of a χ_1^2 distribution $= 3.84 = 1.96^2$.
 - 0.975 quantile of a normal distribution = 1.96
 - Two useful numbers to remember.

Notice that:

- $\sum_{i=1}^{20} Y_i!$ can be ignored cancels out when LnL subtracted
- The only way the data enters into the likelihood is through $\sum_i Y_i$.
 - Sufficient statistic: how the data enters the lnL. $\sum_i Y_i$
 - $-\sum_{i} Y_{i}$ is the sufficient statistic for the Poisson distribution
 - Variability between observations is ignored

- But depends on distribution:
- Normal distributions have 2 parameters, mean and variance
 - LnL has two sufficient statistics: $\sum_i Y_i$ and $\sum_i Y_i^2$

Binomial distribution:

- 2 parameters, N = # trials, and $\pi =$ probability of a "success" on any single trial.
- P[# successes = y] = $\binom{N}{x} \pi^x (1-\pi)^{(N-x)} = \frac{N!}{(N-x)!x!} \pi^x (1-\pi)^{(N-x)}$
- E Y = $N\pi$
- $\hat{\pi} = \frac{Y}{N}$
- Var $\hat{\pi} = \frac{\hat{\pi} (1-\hat{\pi})}{N}$

Comparison of Binomial and Poisson distributions

• Imagine N increasing but mean # successes staying constant:

 $Y \sim Bin(N,\pi), N \to \infty, \pi \to 0, N\pi = constant$

• Distribution of $Y \to$ Poisson

Negative binomial distribution:

- Y = # successes before getting r failures
 - Two parameters: r = # failures and $\pi = P[$ success on a single trial]
 - Two parameters: μ = mean # events, r = overdispersion parameter, could be continuous
- E $Y = \mu$
- Var $Y = \mu + \mu^2/r$, or $\mu + \alpha \mu^2$
- pmf:

$$P(Y = y) = \frac{\Gamma(r+y)}{y! \, \Gamma(r)} \, \left(\frac{r}{r+\mu}\right)^r \left(\frac{\mu}{r+\mu}\right)^y$$

- $\Gamma(n) = (n-1)!$ when n integer
- Var $Y \ge E Y$, equal only when $r = \infty$ or $\alpha = 0$
- $r = \infty$ or $\alpha = 0 \Rightarrow Y \sim \text{Pois}(\mu)$

Estimating μ and r:

- Observe *n* values: $y_1, y_2, y_3 \cdots, y_n$
- LnL(μ , $r \mid \{y\} =$ $\sum \log \Gamma(r + y_i) - \sum \log \Gamma(y_i + 1) - n \log \Gamma(r) + n r \log \left(\frac{r}{r + \mu}\right) + \sum y_i \left(\frac{\mu}{r + \mu}\right)$
- Derivatives are ugly:
 - derivative of $\log \Gamma(x)$ is the digamma function, $\approx \log x$
 - results are transcendental equations, have terms with r and terms with $\log r$
 - Generally no analytical solution, so no equations giving mle's for μ or r
- Need to use numeric maximization common theme in this course, so don't worry about your calculus