
Stat 534: formulae referenced in lecture, week 1: species composition analysis

Poisson probability mass function (pmf), Y ∼ Pois(λ), for x a non-negative integer:

f(y | λ) = P (Y = y | λ) =
e−λλy

y!

Properties of Poisson distributions:

Mean E Y = λ
Variance Var Y = λ

P[ Y = 0 ] = e−λ

One species Vanellus vanellus, northern lapwing
1930’s: 10, 11, 12, 10, 8, 6, 5, 3, 5, 4
1960’s: 25, 17, 20, 4, 7, 18, 27, 18, 18, 10

Log likelihood for n independent Poisson observations:

L(λ | y) =
e−λλy

y!

lnL(λ | (y1, y2, · · · yn) = −n λ+ log λ
n∑
i=1

yi −
n∑
i=1

yi!

Estimating λ: find the value of λ that maximizes the lnL

d lnL
d λ

= −n+
∑n

i=1
Yi

λ
= 0

mle λ̂ =
∑n
i=1 Yi/n = Y

called the maximum likelihood estimator (mle) of θ

How precise is λ̂? Two parts:

• For the statisticians, mostly a reminder

– As sample size, n→∞, Var θ̂ → −1/I

I = E

(
d lnL(θ)

d θ

)(
d lnL(θ)

d θ

)
evaluated at θ

= E
d2 lnL

d θ2
|λ=θ

– I is called information, Fisher information or expected information

– Cramer-Rao lower bound: The mle of θ has the smallest variance of any possible
estimator

∗ When the model is correct

1



– Property of the population

– All the math depends on some assumptions about f(θ), “the regularity condi-
tions”

• For the applied statistician / biologist

– Observed information

H =
d2 lnL

d θ2
evaluated at θ̂

– Property of the sample and the probability model

– Easily (usually) calculated by software

• For any mle, θ̂: Var θ̂ ≈ −1/H.

• When more than one parameter, H is the Hessian matrix (will see examples later)

• For a Poisson distribution:

– H = d2 lnL
d λ2
|λ=λ̂ =

−1
∑

i
Yi

λ2
|λ=λ̂ =

−1
∑

i
Yi

λ̂2

– Var λ̂ = −1/H = λ̂
n

Confidence interval for λ:

• Asymptotic normality

–
(
θ̂ − zp

√
Var θ̂, θ̂ + zp

√
Var θ̂

)
– p =1 - (1-coverage)/2, e.g. p = 0.975 for a 95% confidence interval

– z0.975 = 1.96

– normal quantiles are symmetric so z1−p = −zp.

• Profile likelihood: will see soon

Q: Did the abundance change more than you would expect from random variation?
A hypothesis test: Ho: same λ both periods, Ha: two λ’s, one for each period

Use a likelihood ratio test. Two ways to set this up:

1. based on the hypothesis statements:
Ho: one group of observations, all with one λ
LnLo = −20 λ+ log λ

∑20
i=1 Yi −

∑20
i=1 Yi!

Ha: two groups of observations, 1930’s with λ1, 1960’s with λ2
LnLa =

[
−10 λ1 + log λ1

∑10
i=1 Yi −

∑10
i=1 Yi!

]
+
[
−10 λ2 + log λ2

∑20
i=11 Yi −

∑20
i=11 Yi!

]
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2. based on a model:

Yi ∼ Pois(λi)

log λi = β0 + β1Xi

Xi = 0 if observation i is in 1930’s group, and Xi = 1 if in 1960’s group.

Notice the relationship between the two approaches

• exp β0 = λ1

• β1 = log λ2 − log λ1, so exp β1 = λ2/λ1

• β1 = 0⇔ λ2 = λ1. Expresses Ho

• We choose to put a model on log λ because λ ≥ 0

Construct a test using D = −2 (LnLo − LnLa)

• D = 0: both models fit the data equally well

• D >> 0: Ha fits a lot better than Ho

• When Ho true, asymptotically D ∼ χ2
df

– df = difference in number of parameters between the models

– Applies to any likelihood comparison

– when based on the same data (e.g., same # observations)

– Assumes large samples (asymptotic) but commonly applied to any sample size

• Here, Ha has 2 parameters, Ho has 1 parameter, so df = 2-1 = 1

– 0.95 quantile of a χ2
1 distribution = 3.84 = 1.962.

– 0.975 quantile of a normal distribution = 1.96

– Two useful numbers to remember.

Notice that:

• ∑20
i=1 Yi! can be ignored - cancels out when LnL subtracted

• The only way the data enters into the likelihood is through
∑
i Yi.

– Sufficient statistic: how the data enters the lnL.
∑
i Yi

–
∑
i Yi is the sufficient statistic for the Poisson distribution

– Variability between observations is ignored
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– But depends on distribution:

• Normal distributions have 2 parameters, mean and variance

– LnL has two sufficient statistics:
∑
i Yi and

∑
i Y

2
i

Binomial distribution:

• 2 parameters, N = # trials, and π = probability of a “success” on any single trial.

• P[ # successes = y] =
(
N
x

)
πx(1− π)(N−x) = N !

(N−x)!x!π
x(1− π)(N−x)

• E Y = Nπ

• π̂ = Y
N

• Var π̂ = π̂ (1−π̂)
N

Comparison of Binomial and Poisson distributions

• Imagine N increasing but mean # successes staying constant:

Y ∼ Bin(N, π), N →∞, π → 0, Nπ = constant

• Distribution of Y → Poisson

Negative binomial distribution:

• Y =# successes before getting r failures

– Two parameters: r = # failures and π = P[success on a single trial]

– Two parameters: µ = mean # events, r = overdispersion parameter, could be
continuous

• E Y = µ

• Var Y = µ+ µ2/r, or µ+ αµ2

• pmf:

P(Y = y) =
Γ(r + y)

y! Γ(r)

(
r

r + µ

)r (
µ

r + µ

)y

• Γ(n) = (n− 1)! when n integer

• Var Y ≥ E Y , equal only when r =∞ or α = 0

• r =∞ or α = 0⇒ Y ∼ Pois(µ)

4



Estimating µ and r:

• Observe n values: y1, y2, y3 · · · , yn

• LnL(µ, r | {y} =∑
log Γ(r + yi)−

∑
log Γ(yi + 1)− n log Γ(r) + n r log

(
r

r+µ

)
+
∑
yi
(

µ
r+µ

)
• Derivatives are ugly:

– derivative of log Γ(x) is the digamma function, ≈ log x

– results are transcendental equations, have terms with r and terms with log r

– Generally no analytical solution, so no equations giving mle’s for µ or r

• Need to use numeric maximization
common theme in this course, so don’t worry about your calculus
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